Summary
Epidemiology
paquet relatif à Debian Med épidémiologie
Ce métapaquet dépend d'outils utiles pour la recherche épidémiologique.
Plusieurs paquets utilisent le langage de donnée GNU R pour des
investigations statistiques. Il peut être intéressant de lire le papier
« Une introduction rapide à R pour l'épidémiologie », disponible à
l'adresse suivante (en anglais) :
http://staff.pubhealth.ku.dk/%7Ebxc/Epi/R-intro.pdf
Description
For a better overview of the project's availability as a Debian package, each head row has a color code according to this scheme:
If you discover a project which looks like a good candidate for Debian Med
to you, or if you have prepared an unofficial Debian package, please do not hesitate to
send a description of that project to the Debian Med mailing list
Links to other tasks
|
Debian Med Epidemiology packages
Official Debian packages with high relevance
python3-seirsplus
Models of SEIRS epidemic dynamics with extensions
|
Versions of package python3-seirsplus |
Release | Version | Architectures |
bullseye | 0.1.4+git20200528.5c04080+ds-2 | all |
bookworm | 1.0.9-1 | all |
trixie | 1.0.9-2 | all |
sid | 1.0.9-2 | all |
|
License: DFSG free
|
This package implements generalized SEIRS infectious disease
dynamics models with extensions that model the effect of factors
including population structure, social distancing, testing, contact
tracing, and quarantining detected cases.
Notably, this package includes stochastic implementations of these
models on dynamic networks.
|
|
python3-torch
Tensors and Dynamic neural networks in Python (Python Interface)
|
Versions of package python3-torch |
Release | Version | Architectures |
sid | 2.5.1+dfsg-1 | amd64,arm64,ppc64el,riscv64,s390x |
bullseye | 1.7.1-7 | amd64,arm64,armhf,ppc64el,s390x |
bookworm | 1.13.1+dfsg-4 | amd64,arm64,ppc64el,s390x |
|
License: DFSG free
|
PyTorch is a Python package that provides two high-level features:
(1) Tensor computation (like NumPy) with strong GPU acceleration
(2) Deep neural networks built on a tape-based autograd system
You can reuse your favorite Python packages such as NumPy, SciPy and Cython
to extend PyTorch when needed.
This is the CPU-only version of PyTorch (Python interface).
Please cite:
Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai and Soumith Chintala:
|
|
python3-treetime
inférence de phylogénies marquées temporellement et reconstruction ancestrale – Python 3
|
Versions of package python3-treetime |
Release | Version | Architectures |
bookworm | 0.9.4-1 | all |
sid | 0.11.4-1 | all |
trixie | 0.11.4-1 | all |
buster | 0.5.3-1 | all |
bullseye | 0.8.1-1 | all |
|
License: DFSG free
|
TreeTime fournit des routines pour la reconstruction de séquences ancestrales (ASR) et l’inférence du maximum de vraisemblance de phylogénies selon l’horloge moléculaire, c’est-à-dire un arbre où toutes les branches sont échelonnées de façon que leurs emplacements de nœuds terminaux correspondent à leurs temps d’échantillonnage et les nœuds internes sont placés selon le moment de divergence le plus probable.
TreeTime essaie de trouver un compromis entre les modèles probabilistes sophistiqués de l’évolution et les heuristiques rapides. IL met en œuvre les modèles GTR (Generalised time reversible) d’inférence ancestrale et d’optimisation de longueur de branche, mais prend la topologie de l’arbre telle que donnée. Pour optimiser la vraisemblance de phylogénies échelonnées selon le temps, treetime utilise une approche itérative qui d’abord infère les séquences ancestrales selon la longueur de branche de l’arbre, puis optimise la position des nœuds non contraints sur l’axe de temps, et puis répète ce cycle. La seule optimisation de topologie est la résolution (facultative) des polytomies de façon que cela soit le plus (approximativement) cohérent avec les contraintes d’échantillonnage de temps de l’arbre. Ce paquet est conçu pour être utilisé comme un outil autonome ou comme une bibliothèque utilisée dans une suite d’analyse plus large de phylogénie.
Caractéristiques :
– reconstruction de séquences ancestrale (maximum de vraisemblance marginale et jointe) ;
– inférence d’arbre selon l’horloge moléculaire (maximum de vraisemblance marginale et jointe) ;
– inférence de modèles GTR ;
– changement de racine pour obtenir la meilleure régression racine-extrémité ;
– horloge moléculaire auto-corrélée souple.
Ce paquet fournit le module avec Python 3.
|
|
r-cran-covid19us
cases of COVID-19 in the United States prepared for GNU R
|
Versions of package r-cran-covid19us |
Release | Version | Architectures |
sid | 0.1.9-1 | all |
bookworm | 0.1.9-1 | all |
bullseye | 0.1.7-1 | all |
trixie | 0.1.9-1 | all |
|
License: DFSG free
|
This package provides a GNU R wrapper around the 'COVID Tracking Project API'
https://covidtracking.com/api/ providing data on cases of COVID-19
in the US.
|
|
r-cran-diagnosismed
ensemble d'outils pour diagnostic médical et tests de santé
|
Versions of package r-cran-diagnosismed |
Release | Version | Architectures |
bullseye | 0.2.3-7 | all |
stretch | 0.2.3-4 | all |
jessie | 0.2.3-3 | all |
sid | 0.2.3-7 | all |
trixie | 0.2.3-7 | all |
bookworm | 0.2.3-7 | all |
buster | 0.2.3-6 | all |
Debtags of package r-cran-diagnosismed: |
devel | lang:r |
field | medicine |
interface | commandline |
role | program |
use | analysing |
|
License: DFSG free
|
DiagnosisMed est un paquet GNU R pour analyser des donnés de santé provenant
d'examen de l'état de santé. Il a été conçu pour êtr utilisé par des
professionnels de santé. Ce paquet permet de tster la sensibilité et la
spécificité à partir de résultats de tests catégoriels et continus et inlcuant
des examens aux résultats indéterminés, ou de comparer différents tsts
catégoriels pour estimer les limites raisonnables des tests et les afficher
de manière exploitable par les professionnels de santé. Il n'y a pas encore
d'interface graphique disponible.
|
|
r-cran-epi
analyse épidémiologique GNU R
|
Versions of package r-cran-epi |
Release | Version | Architectures |
sid | 2.53-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
jessie | 1.1.67-4 | amd64,armel,armhf,i386 |
stretch | 2.7-1 | amd64,arm64,armel,armhf,i386,mips,mips64el,mipsel,ppc64el,s390x |
buster | 2.32-2 | amd64,arm64,armhf,i386 |
bullseye | 2.43-1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
bookworm | 2.47-1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
trixie | 2.53-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
upstream | 2.58 |
Debtags of package r-cran-epi: |
field | medicine |
interface | commandline |
role | program |
|
License: DFSG free
|
Fonctions pour analyses démographiques et épidémiologiques dans le
diagramme Lexis, c'est-à-dire des données de suivi de cohorte ou
d'enregistrement, ce qui inclut des données censurées par intervalles et
des représentations de données de différents états. Ce paquet contient
également des fonctions utiles pour la classification et le tracé de
courbes. Il contient des séries de données épidémiologiques.
Le paquet Epi se concentre principalement sur l'épidémiologie
« classique » des maladies chroniques. Le paquet a grandi hors des cours
de pratique statistique en épidémiologie en utilisant R. (pour plus
d'info : http://www.pubhealth.ku.dk/~bxc/SPE).
Une introduction rapide à R pour l'épidémiologie est disponible ici :
http://staff.pubhealth.ku.dk/%7Ebxc/Epi/R-intro.pdf
Attention, les pages 38 à 120 correspondent aux pages de manuels pour le
paquet Epi.
Epi n'est pas le seul paquet R pour l'analyse épidémiologique, un paquet
ayant plus d'affinité avec l'épidémiologie des maladies infectieuses est
le paquet epitools, qui est aussi disponible dans Debian.
Epi est utilisé par de département de biostatistique de l'université de
Copenhague.
|
|
r-cran-epibasix
fonctions élémentaires d’épidémiologie de GNU R
|
Versions of package r-cran-epibasix |
Release | Version | Architectures |
buster | 1.5-1 | all |
sid | 1.5-2 | all |
trixie | 1.5-2 | all |
bookworm | 1.5-2 | all |
jessie | 1.3-1 | amd64,armel,armhf,i386 |
stretch | 1.3-2 | amd64,arm64,armel,armhf,i386,mips,mips64el,mipsel,ppc64el,s390x |
bullseye | 1.5-2 | all |
Debtags of package r-cran-epibasix: |
field | medicine |
interface | commandline |
role | program |
|
License: DFSG free
|
Il s’agit de fonctions élémentaires d’épidémiologie pour des cours de
licence d’épidémiologie et biostatistique.
Ce paquet fournit des outils élémentaires pour l’analyse de problèmes
épidémiologiques, allant de l’estimation de taille d’échantillon jusqu’à
l’analyse de tableau de contingence 2x2 et de mesures basiques de
concordance (kappa, sensibilité/spécificité). La publication appropriée et
les énoncés sommaires sont aussi produits pour faciliter l’interprétation
partout où cela est possible. Ce paquet est un travail en cours, aussi
tout commentaire ou suggestion sera apprécié. Le code source est partout
commenté pour faciliter les modifications. L’audience visée est les cours
d’épidémiologie et biostatistique pour le cycle d’enseignement supérieur.
|
|
r-cran-epicalc
calculs épidémiologiques avec GNU R
|
Versions of package r-cran-epicalc |
Release | Version | Architectures |
buster | 2.15.1.0-4 | all |
trixie | 2.15.1.0-5 | all |
stretch | 2.15.1.0-2 | all |
jessie | 2.15.1.0-1 | all |
sid | 2.15.1.0-5 | all |
bookworm | 2.15.1.0-5 | all |
bullseye | 2.15.1.0-5 | all |
Debtags of package r-cran-epicalc: |
devel | lang:r |
field | medicine, statistics |
interface | commandline |
role | program |
|
License: DFSG free
|
Il s’agit de fonctions qui facilitent l’utilisation de R pour des
calculs épidémiologiques.
Des ensembles de données de formats Dbase (.dbf), Stata (.dta), SPSS
(.sav), EpiInfo (.rec) et valeurs séparées par des virgules (.csv)
ainsi que des données orientées cadre de R peuvent être traités
pour réaliser plusieurs calculs épidémiologiques.
|
|
r-cran-epiestim
GNU R estimate time varying reproduction numbers from rpidemic curves
|
Versions of package r-cran-epiestim |
Release | Version | Architectures |
buster-backports | 2.2-4+dfsg-1~bpo10+1 | all |
sid | 2.2-4+dfsg-1 | all |
trixie | 2.2-4+dfsg-1 | all |
bookworm | 2.2-4+dfsg-1 | all |
bullseye | 2.2-4+dfsg-1 | all |
|
License: DFSG free
|
Tools to quantify transmissibility throughout
an epidemic from the analysis of time series of incidence as described in
Cori et al. (2013) and Wallinga and Teunis (2004)
.
|
|
r-cran-epir
fonctions de GNU R pour l’analyse de données épidémiologiques
|
Versions of package r-cran-epir |
Release | Version | Architectures |
jessie | 0.9-59-1 | all |
buster | 0.9-99-1 | all |
stretch | 0.9-79-1 | all |
trixie | 2.0.76+dfsg-1 | all |
bullseye | 2.0.19-1 | all |
sid | 2.0.76+dfsg-1 | all |
bookworm | 2.0.57+dfsg-1 | all |
upstream | 2.0.78 |
Debtags of package r-cran-epir: |
devel | lang:r |
field | medicine |
interface | commandline |
role | program |
use | analysing |
|
License: DFSG free
|
Il s’agit d’un paquet pour l’analyse de données épidémiologiques. Il
contient des fonctions pour directement ou indirectement ajuster les
fréquences de maladies, quantifier les mesures d’association sur la base
d’une ou plusieurs couches de données de comptage présentées dans un
tableau de contingence, et calculer l’intervalle de confiance entre le
risque d’incidence et le taux d’incidence estimés. Il fournit aussi
diverses fonctions pour la méta-analyse, l’interprétation de diagnostics et
le calcul de taille d’échantillon.
|
|
r-cran-epitools
outils GNU R d’épidémiologie pour les données et graphiques
|
Versions of package r-cran-epitools |
Release | Version | Architectures |
sid | 0.5-10.1-2 | all |
buster | 0.5-10-2 | all |
bullseye | 0.5-10.1-2 | all |
bookworm | 0.5-10.1-2 | all |
stretch | 0.5-7-1 | all |
jessie | 0.5-7-1 | all |
trixie | 0.5-10.1-2 | all |
Debtags of package r-cran-epitools: |
field | medicine |
interface | commandline |
role | program |
|
License: DFSG free
|
Il s’agit d’outils de GNU R pour l’épidémiologie de santé publique et
l’analyse de données. Epitools fournit des outils numériques et des
solutions de programmation qui ont été utilisées et testées, en situation
réelle, dans des applications d’épidémiologie.
Beaucoup de problèmes pratiques dans l’analyse de données de santé publique
ont besoin de programmation ou des logiciels particuliers, et les
chercheurs pourraient faire de la programmation en double. Souvent, des
analyses simples, telles que la construction d’intervalles de confiance, ne
sont pas calculées et par conséquent compliquent les inférences
statistiques appropriées pour de petites aires géographiques. Il existe de
nombreux exemples où des outils numériques simples et utiles qui
amélioreraient le travail d’épidémiologistes dans des départements locaux
ne sont pas facilement disponibles pour le problème à résoudre. La
disponibilité de ces outils encouragerait une plus large utilisation des
méthodes appropriées et promouvrait les pratiques de santé publique basées
sur des éléments probants.
|
|
r-cran-incidence
GNU R compute, handle, plot and model incidence of dated events
|
Versions of package r-cran-incidence |
Release | Version | Architectures |
sid | 1.7.5-1 | all |
buster-backports | 1.7.3-1~bpo10+1 | all |
bullseye | 1.7.3-1 | all |
bookworm | 1.7.3-1 | all |
trixie | 1.7.5-1 | all |
|
License: DFSG free
|
Provides functions and classes to compute, handle and visualise
incidence from dated events for a defined time interval. Dates can be
provided in various standard formats. The class 'incidence' is used to
store computed incidence and can be easily manipulated, subsetted, and
plotted. In addition, log-linear models can be fitted to 'incidence'
objects using 'fit'. This package is part of the RECON
(http://www.repidemicsconsortium.org/) toolkit for outbreak analysis.
|
|
r-cran-kernelheaping
GNU R kernel density estimation for heaped and rounded data
|
Versions of package r-cran-kernelheaping |
Release | Version | Architectures |
bookworm | 2.3.0-1 | all |
sid | 2.3.0-1 | all |
|
License: DFSG free
|
In self-reported or anonymised data the user often encounters heaped
data, i.e. data which are rounded (to a possibly different degree of
coarseness). While this is mostly a minor problem in parametric density
estimation the bias can be very large for non-parametric methods such as
kernel density estimation. This package implements a partly Bayesian
algorithm treating the true unknown values as additional parameters and
estimates the rounding parameters to give a corrected kernel density
estimate. It supports various standard bandwidth selection methods.
Varying rounding probabilities (depending on the true value) and
asymmetric rounding is estimable as well: Gross, M. and Rendtel, U.
(2016) (). Additionally, bivariate non-
parametric density estimation for rounded data, Gross, M. et al. (2016)
(), as well as data aggregated on areas is
supported.
|
|
r-cran-lexrankr
résumé de texte extractif avec l’algorithme LexRank
|
Versions of package r-cran-lexrankr |
Release | Version | Architectures |
trixie | 0.5.2-8 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
bullseye | 0.5.2-2 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
buster | 0.5.0-2 | amd64,arm64,armhf,i386 |
bookworm | 0.5.2-8 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
sid | 0.5.2-8 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
|
License: DFSG free
|
Il s’agit d’une implémentation pour R de l’algorithme LexRank mettant en œuvre la méthode stochastique basée sur un graphe pour calculer l’importance d’unités textuelles dans le traitement du langage naturel. La technique du problème de résumé de texte est testée. Le résumé de texte extractif repose sur le concept de l’importance relative de la phrase pour identifier les plus importantes dans un document ou un ensemble de documents. L’importance relative est typiquement définie selon la présence de certains mots importants ou selon la similarité avec une pseudo-phrase centroïde.
|
|
r-cran-prevalence
GNU R tools for prevalence assessment studies
|
Versions of package r-cran-prevalence |
Release | Version | Architectures |
sid | 0.4.1-1 | all |
bookworm | 0.4.1-1 | all |
trixie | 0.4.1-1 | all |
|
License: DFSG free
|
The prevalence package provides Frequentist and Bayesian methods for
prevalence assessment studies. IMPORTANT: the truePrev functions in the
prevalence package call on JAGS (Just Another Gibbs Sampler), which
therefore has to be available on the user's system. JAGS can be
downloaded from http://mcmc-jags.sourceforge.net/.
|
|
r-cran-seroincidence
calculatrice de séroincidence pour GNU R
|
Versions of package r-cran-seroincidence |
Release | Version | Architectures |
sid | 2.0.0-3 | all |
stretch | 1.0.5-1 | all |
buster | 2.0.0-1 | all |
bullseye | 2.0.0-2 | all |
trixie | 2.0.0-3 | all |
bookworm | 2.0.0-3 | all |
|
License: DFSG free
|
Les niveaux d'anticorps mesurés dans des échantillons transversaux de
population peuvent être traduits en estimations de la fréquence à laquelle
les séroconversions (nouvelles infections) se produisent. Afin
d'interpréter les niveaux transversaux d'anticorps mesurés, les paramètres
qui prédisent la décomposition des anticorps doivent être connus. Dans les
articles publiés précédemment (Simonsen et al. 2009 et Versteegh et al.
2005), cette information s'obtenait à partir d'études longitudinales sur
des sujets dans lesquels est confirmé par des cultures une infection de
Salmonelle ou de Campylobacter. Un modèle de rétrocalcul bayésien était
utilisé pour convertir les mesures d'anticorps en estimation de temps
depuis l'infection. Cela peut être utilisé pour estimer la séroincidence
dans un échantillon transversal de population. Pour des mesures
longitudinales et des mesures transversales de concentration d'anticorps,
l'ELISA indirecte était utilisé. Les modèles ne sont valables que pour des
personnes de plus de 18 ans. Les estimations de séroincidence conviennent
pour surveiller l'effet des programmes de contrôle quand des échantillons
transversaux représentatifs de sérum sont analysables. Cela fournit des
informations plus précises sur le taux d'infection de populations dans les
pays.
|
|
r-cran-sf
|
Versions of package r-cran-sf |
Release | Version | Architectures |
stretch-backports | 0.7-2+dfsg-1~bpo9+1 | amd64 |
bullseye | 0.9-7+dfsg-5 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
bookworm | 1.0-9+dfsg-1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
sid | 1.0-17+dfsg-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
trixie | 1.0-17+dfsg-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
buster | 0.7-2+dfsg-1 | amd64,arm64,armhf,i386 |
stretch-backports | 0.6-3+dfsg-1~bpo9+1 | arm64,armel,armhf,i386,mips,mips64el,mipsel,ppc64el,s390x |
upstream | 1.0-19 |
|
License: DFSG free
|
Support for simple features, a standardized way to encode spatial vector
data. Binds to 'GDAL' for reading and writing data, to 'GEOS' for
geometrical operations, and to 'PROJ' for projection conversions and
datum transformations.
|
|
r-cran-sjplot
GNU R data visualization for statistics in social science
|
Versions of package r-cran-sjplot |
Release | Version | Architectures |
bullseye | 2.8.7-1 | all |
buster | 2.6.2-1 | all |
stretch-backports | 2.6.2-1~bpo9+1 | all |
bookworm | 2.8.12+dfsg-1 | all |
sid | 2.8.16+dfsg-1 | all |
upstream | 2.8.17 |
|
License: DFSG free
|
Collection of plotting and table output functions for data
visualization. Results of various statistical analyses (that are
commonly used in social sciences) can be visualized using this package,
including simple and cross tabulated frequencies, histograms, box plots,
(generalized) linear models, mixed effects models, principal component
analysis and correlation matrices, cluster analyses, scatter plots,
stacked scales, effects plots of regression models (including
interaction terms) and much more. This package supports labelled data.
|
|
r-cran-surveillance
paquet de GNU R pour la modélisation et la surveillance de phénomènes épidémiques
|
Versions of package r-cran-surveillance |
Release | Version | Architectures |
buster | 1.16.2-1 | amd64,arm64,armhf,i386 |
bookworm | 1.20.3-1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
stretch | 1.13.0-1 | amd64,arm64,armel,armhf,i386,mips,mips64el,mipsel,ppc64el,s390x |
sid | 1.24.0-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
trixie | 1.24.0-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
jessie | 1.8-0-1 | amd64,armel,armhf,i386 |
bullseye | 1.19.0-2 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
upstream | 1.24.1 |
Debtags of package r-cran-surveillance: |
field | medicine |
interface | commandline |
role | program |
|
License: DFSG free
|
Il s’agit de la mise en œuvre de méthodes statistiques pour la modélisation et la supervision de séries temporelles de données de comptage, proportion et catégorie, ainsi que la modélisation de processus ponctuels de phénomènes épidémiques en temps continu.
Les méthodes de surveillance se concentrent sur les aberrations de détection dans les relevés de séries temporelles provenant de surveillance de santé publique de maladies transmissibles, mais les applications peuvent aussi bien se servir de métriques d’environnement, d’ingénierie de fiabilité, d’économie ou de sciences sociales. Le paquet implémente beaucoup de procédure de détection classiques d’épidémies telles que l’algorithme (amélioré) de Farrington ou la méthode binomiale négative GLR-CUSUM de Höhle et Paul (2008) . Une nouvelle approche CUSUM combinant logistique et modélisation multinomiale de logistique est aussi fournie. Le paquet contient plusieurs données du monde réel, la possibilité de simuler des données d’épidémie, de visualiser les résultats de surveillance de manière temporelle, spatiale ou spatio-temporelle. Un aperçu des procédures de surveillance est fourni par Salmon et al. (2016) .
Pour l’analyse rétrospective de la propagation d’épidémie, ce paquet fournit trois cadriciels de modélisation endémique-épidémique avec des outils pour la visualisation, l’inférence de vraisemblance et la simulation. hhh4() estime les modèles pour des séries temporelles selon Paul et Held (2011) et Meyer et Held (2014) . twinSIR() modélise l’historique d’évènements SIR (Susceptible, Infectious, Recovered) d’une population fixe, par exemple, des épidémies dans des fermes ou des réseaux, en tant que processus ponctuels multivariés comme proposé par Höhle (2009) . twinstim() estime les modèles de processus ponctuels auto-excités pour un patron de processus spatio-temporel d’évènements infectieux, par exemple, données temporelles géo-référencées de surveillance comme proposé par Meyer et al. (2012) . Un récent aperçu des cadriciels de modèle spatio-temporel implémentés pour les phénomènes épidémiques a été publié par Meyer et al. (2017) .
|
|
Official Debian packages with lower relevance
python3-epimodels
simple interface to simulate mathematical epidemic models in Python3
|
Versions of package python3-epimodels |
Release | Version | Architectures |
bookworm | 0.4.0-1 | all |
sid | 0.4.0-4 | all |
trixie | 0.4.0-4 | all |
upstream | 0.4.3 |
|
License: DFSG free
|
This library provides a simple interface to simulate mathematical
epidemic models in Python3. It is a precondition for the program
epigrass.
|
|
r-cran-cmprsk
GNU R subdistribution analysis of competing risks
|
Versions of package r-cran-cmprsk |
Release | Version | Architectures |
buster | 2.2-7-4 | amd64,arm64,armhf,i386 |
stretch | 2.2-7-2 | amd64,arm64,armel,armhf,i386,mips,mips64el,mipsel,ppc64el,s390x |
sid | 2.2-11-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
trixie | 2.2-11-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
bookworm | 2.2-11-1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
bullseye | 2.2-10-1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
upstream | 2.2-12 |
|
License: DFSG free
|
This GNU R package supports estimation, testing and regression modeling
of subdistribution functions in competing risks, as described in Gray
(1988), A class of K-sample tests for comparing the cumulative incidence
of a competing risk.
|
|
r-cran-msm
modèles de Markov multi-état et caché en temps continu
|
Versions of package r-cran-msm |
Release | Version | Architectures |
buster | 1.6.6-2 | amd64,arm64,armhf,i386 |
sid | 1.8-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
trixie | 1.8-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
bookworm | 1.7-1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
bullseye | 1.6.8-1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
stretch | 1.6.4-1 | amd64,arm64,armel,armhf,i386,mips,mips64el,mipsel,ppc64el,s390x |
jessie | 1.4-2 | amd64,armel,armhf,i386 |
upstream | 1.8.2 |
Debtags of package r-cran-msm: |
interface | commandline |
role | program |
|
License: DFSG free
|
Fonctions pour adapter des modèles de Markov temporels cachés et continus à
des données longitudinales. Les taux de transitions de Markov et le
processus de sortie de Markov caché peuvent être modélisés en terme de co-
variables. Une variété de schémas d'observation sont permis, qui
comprennent une surveillance des processus à des temps arbitraires, une
observation complète des processus, et des états censurés.
|
|
shiny-server
put Shiny web apps online
|
Versions of package shiny-server |
Release | Version | Architectures |
sid | 1.5.20.1002-3 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
trixie | 1.5.20.1002-3 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
bookworm | 1.5.20.1002-1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
upstream | 1.5.23.1030 |
|
License: DFSG free
|
Shiny Server lets you put shiny web applications and interactive
documents online. Take your Shiny apps and share them with your
organization or the world.
Shiny Server lets you go beyond static charts, and lets you manipulate
the data. Users can sort, filter, or change assumptions in real-time.
Shiny server empower your users to customize your analysis for their
specific needs and extract more insight from the data.
|
|
Packaging has started and developers might try the packaging code in VCS
chime
COVID-19 Hospital Impact Model for Epidemics
|
Versions of package chime |
Release | Version | Architectures |
VCS | 0.2.1-1 | all |
|
License: MIT
Debian package not available
Version: 0.2.1-1
|
Penn Medicine - COVID-19 Hospital Impact Model for Epidemics
This tool was developed by the Predictive Healthcare team at Penn
Medicine. For questions and comments please see our contact page. Code
can be found on Github. Join our Slack channel if you would like to
get involved!
The estimated number of currently infected individuals is 533. The 91
confirmed cases in the region imply a 17% rate of detection. This is
based on current inputs for Hospitalizations (4), Hospitalization rate
(5%), Region size (4119405), and Hospital market share (15%).
An initial doubling time of 6 days and a recovery time of 14.0 days
imply an R_0 of 2.71.
Mitigation: A 0% reduction in social contact after the onset of the
outbreak reduces the doubling time to 6.0 days, implying an effective
R_t of 2.712.712.71.
|
epifire
model the spread of an infectious disease in a population
|
Versions of package epifire |
Release | Version | Architectures |
VCS | 3.34.0+dfsg-1 | all |
|
License: BSD-3-clause
Debian package not available
Version: 3.34.0+dfsg-1
|
EpiFire is a C++ applications programming interface (API) that does
two things:
- Model the spread of an infectious disease in a population
- Generate and manipulate networks of nodes and edges
While the network code can be used independently from the
epidemiological code and vice versa—they are conceptually and
functionally distinct—from the beginning, the libraries were developed
to be compatible with each other. What EpiFire excels at is simulating
the stochastic spread of disease on contact networks.
|
netepi-analysis
network-enabled tools for epidemiology and public health practice
|
Versions of package netepi-analysis |
Release | Version | Architectures |
VCS | 0.9.0-2 | all |
|
License: HACOS
Debian package not available
Version: 0.9.0-2
|
NetEpi, which is short for "Network-enabled Epidemiology", is a
collaborative project to create a suite of free, open source software
tools for epidemiology and public health practice. Anyone with an
interest in population health epidemiology or public health
informatics is encouraged to examine the prototype tools and to
consider contributing to their further development. Contributions
which involve formal and/or informal testing of the tools in a wide
range of circumstances and environments are particularly welcome, as
is assistance with design, programming and documentation tasks.
This is a tool for conducting epidemiological analysis of data sets,
both large and small, either through a Web browser interface, or via
a programmatic interface. In many respects it is similar to the
analysis facilities included in the Epi Info suite, except that
NetEpi Analysis is designed to be installed on servers and accessed
remotely via Web browsers, although it can also be installed on
individual desktop or laptop computers.
The software was developed by New South Wales Department of Health.
|
netepi-collection
network-enabled tools for epidemiology and public health practice
|
Versions of package netepi-collection |
Release | Version | Architectures |
VCS | 1.8.4-2 | all |
|
License: HACOS
Debian package not available
Version: 1.8.4-2
|
NetEpi, which is short for "Network-enabled Epidemiology", is a
collaborative project to create a suite of free, open source software
tools for epidemiology and public health practice. Anyone with an
interest in population health epidemiology or public health
informatics is encouraged to examine the prototype tools and to
consider contributing to their further development. Contributions
which involve formal and/or informal testing of the tools in a wide
range of circumstances and environments are particularly welcome, as
is assistance with design, programming and documentation tasks.
NetEpi Case Manager is a tool for securely collecting structured
information about cases and contacts of communicable (and other)
diseases through Web browsers and the Internet. New data collection
forms can be designed and deployed quickly by epidemiologists, using
a "point-and-click" interface, without the need for knowledge of or
training in any programming language. Data can then be collected from
users of the system, who can be located anywhere in the world, into a
centralised database. All that is needed by users of the system is a
relatively recent Web browser and an Internet connection ("NetEpi" is
short for "Network-enabled Epidemiology"). In many respects, NetEpi
Case Manager is like a Web-enabled version of the data entry
facilities in the very popular Epi Info suite of programmes published
by the US Centers for Disease Control and Prevention, and in the
Danish EpiData project, which is available for several languages. The
software was developed by the Centre for Epidemiology and Research of
the New South Wales Department of Health, with contributions from
Population Health Division of the Australian Government Department of
Health and Ageing.
The software was developed by New South Wales Department of Health.
|
r-cran-covid19
GNU R Coronavirus COVID-19 data acquisition and visualization
|
Versions of package r-cran-covid19 |
Release | Version | Architectures |
VCS | 0.2.1-1 | all |
|
License: GPL-3
Debian package not available
Version: 0.2.1-1
|
This GNU R package provides pre-processed, ready-to-use, tidy format
datasets of the 2019 Novel Coronavirus COVID-19 (2019-nCoV) epidemic. The
latest data are downloaded in real-time, processed and merged with
demographic indicators from several trusted sources. The package
implements advanced data visualization across the space and time
dimensions by means of animated mapping. Besides worldwide data,
the package includes granular data for Italy, Switzerland and the
Diamond Princess.
|
ushahidi
web platform for information collection
|
Versions of package ushahidi |
Release | Version | Architectures |
VCS | 2.7.4-1 | all |
|
License: LGPL-3+
Debian package not available
Version: 2.7.4-1
|
Ushahidi is a platform that allows information collection,
visualization and interactive mapping, allowing anyone to submit
information through text messaging using a mobile phone, email or web
form.
It can be used to monitor epidemic diseases, measuring the impact of
natural disasters, uncovering corruption, and empowering peace makers.
|
No known packages available but some record of interest (WNPP bug)
framework for creating agent based simulations
|
|
License: BSD
Debian package not available
|
Repast Simphony is a free and open source agent-based modeling toolkit
that simplifies model creation and use. Repast Simphony offers users a
rich variety of features including the following:
- Fluid model component development using any mixture of Java, Groovy,
and flowcharts in each project;
- A pure Java point-and-click model execution environment that includes
built-in results logging and graphing tools as well as automated
connections to a variety of optional external tools including the R
statistics environment, *ORA and Pajek network analysis plugins, A
live agent SQL query tool plugin, the VisAD scientific visualization
package, the Weka data mining platform, many popular spreadsheets,
the MATLAB computational mathematics environment, and the iReport
visual report designer;
- An extremely flexible hierarchically nested definition of space
including the ability to do point-and-click and modeling and
visualization of 2D environments; 3D environments; networks including
full integration with the JUNG network modeling library as well as
Microsoft Excel spreadsheets and UCINET DL file importing; and
geographical spaces including 2D and 3D Geographical Information
Systems (GIS) support;
- A range of data storage "freeze dryers" for model check pointing
and restoration including XML file storage, text file storage, and
database storage;
- A fully concurrent multithreaded discrete event scheduler;
- Libraries for genetic algorithms, neural networks, regression, random
number generation, and specialized mathematics;
- An automated Monte Carlo simulation framework which supports multiple
modes of model results optimization;
- Built-in tools for integrating external models;
- Distributed computing with Terracotta;
- Full object-orientation;
- Optional end-to-end XML simulation
- A point-and-click model deployment system
|
|