Summary
Molecular Ab Initio Calculations
DebiChem Molecular Ab Initio Calculations
This metapackage will install packages doing molecular ab initio calculations
which might be useful for chemists.
Description
For a better overview of the project's availability as a Debian package, each head row has a color code according to this scheme:
If you discover a project which looks like a good candidate for DebiChem
to you, or if you have prepared an unofficial Debian package, please do not hesitate to
send a description of that project to the DebiChem mailing list
Links to other tasks
|
DebiChem Molecular Ab Initio Calculations packages
Official Debian packages with high relevance
aces3
|
Versions of package aces3 |
Release | Version | Architectures |
jessie | 3.0.8-4 | amd64,armel,armhf,i386 |
bookworm | 3.0.8-9 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
bullseye | 3.0.8-7 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
buster | 3.0.8-6 | amd64,arm64,armhf,i386 |
stretch | 3.0.8-5.1 | amd64,arm64,armel,armhf,i386,mips,mips64el,mipsel,ppc64el,s390x |
Debtags of package aces3: |
role | program |
|
License: DFSG free
|
ASCEII는 상관된 방법에 초점을 맞춘 전자 구조 계산 프로그램입니다. 병렬화 프레임워크로 Super Instruction Assembly Language (SIAL)을 사용하는 병렬 후속 제품입니다.
기능은 다음과 같습니다:
다음 방법에 대한 에너지, 분석 기울기 및 분석 헤시안:
- 제한/무제한 스핀 또는 제한 오픈-쉘 Hartree-Fock (HF)
- 2차 Moeller-Plesset 삽관 이론 (MP2)
다음 방법에 대한 에너지 및 분석 기울기:
또한 다음 방법에 대한 에너지를 계산할 수 있습니다:
- pertubative 트리플을 가지는 결합 클러스터 싱글 및 더블 (CCSD(T))
- 2차 구성-상호작용 싱글 및 더블 (QCISD)
자극 상태는 다음 방법으로 계산될 수 있습니다:
- 2차 구성 상호작용 싱글 및 더블
- 결합 클라스터 운동 방정식 (EOM-CC)
내부 좌표 지오메트리 최적화 도구도 포함합니다. 분석 기울기를 사용할 수 없을 경우, 유한 차분을 통한 수치적 기울기가 사용됩니다.
Please register by following this link if you are using aces3.
|
|
bagel
Computational Chemistry Package
|
Versions of package bagel |
Release | Version | Architectures |
buster | 1.2.2-1 | amd64,arm64 |
bullseye | 1.2.2-2 | amd64,arm64,mips64el,ppc64el,s390x |
stretch | 0.0~git20170109-1 | amd64,arm64,mips64el,ppc64el,s390x |
bookworm | 1.2.2-6 | amd64,arm64,mips64el,ppc64el,s390x |
trixie | 1.2.2-8 | amd64,arm64,mips64el,ppc64el,riscv64,s390x |
sid | 1.2.2-8 | amd64,arm64,mips64el,ppc64el,riscv64,s390x |
|
License: DFSG free
|
BAGEL (Brilliantly Advanced General Electronic-structure Library) is a
computational chemistry package aimed at large-scale parallel
computations. It specializes on highgly accurate methods and includes
density-fitting and relativistic effects for most of the methods it
implements.
It can compute energies and gradients for the following methods:
- Hartree-Fock (HF)
- Density-Functional Theory (DFT)
- Second-order Moeller-Plesset perturbation theory (MP2)
- Complete active space SCF (CASSCF)
- Complete active space second order perturbation theory (CASPT2)
- Extended multistate CASPT2 (XMS-CASPT2)
Additionally, it can compute energies for the following methods:
- Configuration-interaction singles (CIS)
- Full configuration-interaction (FCI)
- Multi-state internally contracted multireference configuration-interaction
(ic-MRCI)
- N-electron valence-state second order perturbation theory (NEVPT2)
- Active-space decomposition (ASD) for dimers and for multiple sites via
density matrix renormalization group (ASD-DMRG)
BAGEL is able to optimize stationary geometries and conical intersections and
to compute vibrational frequencies.
BAGEL does not include a disk interface, so computations need to fit in
memory.
|
|
chemps2
Executable to call libchemps2-3t64 from the command line
|
Versions of package chemps2 |
Release | Version | Architectures |
bullseye | 1.8.10-2 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
sid | 1.8.12-3.1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
stretch | 1.8.3-2 | amd64,arm64,armel,armhf,i386,mips,mips64el,mipsel,ppc64el,s390x |
buster | 1.8.9-1 | amd64,arm64,armhf,i386 |
bookworm | 1.8.12-1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
|
License: DFSG free
|
chemps2 is a scientific library which contains a spin-adapted
implementation of the density matrix renormalization group (DMRG)
for ab initio quantum chemistry. This wavefunction method allows one
to obtain numerical accuracy in active spaces beyond the capabilities
of full configuration interaction (FCI), and allows one to extract
the 2-, 3-, and 4-particle reduced density matrices (2-, 3- and 4-RDM)
of the active space.
For general active spaces up to 40 electrons in 40 orbitals can be
handled with DMRG, and for one-dimensional active spaces up to 100
electrons in 100 orbitals. The 2-RDM of these active spaces can
also be easily extracted, while the 3- and 4-RDM are limited to
about 28 orbitals.
When the active space size becomes prohibitively expensive for FCI,
DMRG can be used to replace the FCI solver in the complete active
space self consistent field (CASSCF) method and the corresponding
complete active space second order perturbation theory (CASPT2).
The corresponding methods are called DMRG-SCF and DMRG-CASPT2,
respectively. For DMRG-SCF the active space 2-RDM is required, and
for DMRG-CASPT2 the active space 4-RDM.
This package installs the executable which parses Hamiltonians in
fcidump format, performs DMRG-SCF and DMRG-CASPT2 calculations as
specified by the user.
|
|
cp2k
Ab Initio Molecular Dynamics
|
Versions of package cp2k |
Release | Version | Architectures |
sid | 2023.2-2 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,s390x |
jessie | 2.5.1-3 | amd64,armel,armhf,i386 |
stretch | 4.1-1 | amd64,arm64,armel,armhf,i386,mips,mips64el,mipsel,ppc64el,s390x |
buster | 6.1-2 | amd64,arm64,armhf,i386 |
bullseye | 8.1-9 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
bookworm | 2023.1-2 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
upstream | 2024.3 |
|
License: DFSG free
|
CP2K is a program to perform simulations of solid state, liquid, molecular and
biological systems. It is especially aimed at massively parallel and linear
scaling electronic structure methods and state-of-the-art ab-initio molecular
dynamics (AIMD) simulations.
CP2K is optimized for the mixed Gaussian and Plane-Waves (GPW) method based on
pseudopotentials, but is able to run all-electron or pure plane-wave/Gaussian
calculations as well. Features include:
Ab-initio Electronic Structure Theory Methods using the QUICKSTEP module:
- Density-Functional Theory (DFT) energies and forces
- Hartree-Fock (HF) energies and forces
- Moeller-Plesset 2nd order perturbation theory (MP2) energies and forces
- Random Phase Approximation (RPA) energies
- Gas phase or Periodic boundary conditions (PBC)
- Basis sets include various standard Gaussian-Type Orbitals (GTOs), Pseudo-
potential plane-waves (PW), and a mixed Gaussian and (augmented) plane wave
approach (GPW/GAPW)
- Norm-conserving, seperable Goedecker-Teter-Hutter (GTH) and non-linear core
corrected (NLCC) pseudopotentials, or all-electron calculations
- Local Density Approximation (LDA) XC functionals including SVWN3, SVWN5,
PW92 and PADE
- Gradient-corrected (GGA) XC functionals including BLYP, BP86, PW91, PBE and
HCTH120 as well as the meta-GGA XC functional TPSS
- Hybrid XC functionals with exact Hartree-Fock Exchange (HFX) including
B3LYP, PBE0 and MCY3
- Double-hybrid XC functionals including B2PLYP and B2GPPLYP
- Additional XC functionals via LibXC
- Dispersion corrections via DFT-D2 and DFT-D3 pair-potential models
- Non-local van der Waals corrections for XC functionals including B88-vdW,
PBE-vdW and B97X-D
- DFT+U (Hubbard) correction
- Density-Fitting for DFT via Bloechl or Density Derived Atomic Point Charges
(DDAPC) charges, for HFX via Auxiliary Density Matrix Methods (ADMM) and
for MP2/RPA via Resolution-of-identity (RI)
- Sparse matrix and prescreening techniques for linear-scaling Kohn-Sham (KS)
matrix computation
- Orbital Transformation (OT) or Direct Inversion of the iterative subspace
(DIIS) self-consistent field (SCF) minimizer
- Local Resolution-of-Identity Projector Augmented Wave method (LRIGPW)
- Absolutely Localized Molecular Orbitals SCF (ALMO-SCF) energies for linear
scaling of molecular systems
- Excited states via time-dependent density-functional perturbation theory
(TDDFPT)
Ab-initio Molecular Dynamics:
- Born-Oppenheimer Molecular Dynamics (BOMD)
- Ehrenfest Molecular Dynamics (EMD)
- PS extrapolation of initial wavefunction
- Time-reversible Always Stable Predictor-Corrector (ASPC) integrator
- Approximate Car-Parrinello like Langevin Born-Oppenheimer Molecular Dynamics
(Second-Generation Car-Parrinello Molecular Dynamics (SGCP))
Mixed quantum-classical (QM/MM) simulations:
- Real-space multigrid approach for the evaluation of the Coulomb
interactions between the QM and the MM part
- Linear-scaling electrostatic coupling treating of periodic boundary
conditions
- Adaptive QM/MM
Further Features include:
- Single-point energies, geometry optimizations and frequency calculations
- Several nudged-elastic band (NEB) algorithms (B-NEB, IT-NEB, CI-NEB, D-NEB)
for minimum energy path (MEP) calculations
- Global optimization of geometries
- Solvation via the Self-Consistent Continuum Solvation (SCCS) model
- Semi-Empirical calculations including the AM1, RM1, PM3, MNDO, MNDO-d, PNNL
and PM6 parametrizations, density-functional tight-binding (DFTB) and
self-consistent-polarization tight-binding (SCP-TB), with or without
periodic boundary conditions
- Classical Molecular Dynamics (MD) simulations in microcanonical ensemble
(NVE) or canonical ensmble (NVT) with Nose-Hover and canonical sampling
through velocity rescaling (CSVR) thermostats
- Metadynamics including well-tempered Metadynamics for Free Energy
calculations
- Classical Force-Field (MM) simulations
- Monte-Carlo (MC) KS-DFT simulations
- Static (e.g. spectra) and dynamical (e.g. diffusion) properties
- ATOM code for pseudopotential generation
- Integrated molecular basis set optimization
CP2K does not implement conventional Car-Parrinello Molecular Dynamics (CPMD).
|
|
elk-lapw
All-Electron Density-Functional Electronic Structure Code
|
Versions of package elk-lapw |
Release | Version | Architectures |
buster | 5.4.24-2 | amd64,arm64,armhf,i386 |
stretch | 4.0.15-2 | amd64,arm64,armel,armhf,i386,mips,mips64el,mipsel,ppc64el,s390x |
jessie | 2.3.22-1 | amd64,armel,armhf,i386 |
sid | 9.6.8-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
bookworm | 8.4.30-1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
bullseye | 6.3.2-2 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
upstream | 10.1.15 |
|
License: DFSG free
|
Elk is an all-electron full-potential linearised augmented-plane wave
(FP-LAPW) code. By not including pseudo-potentials, Elk can provide very
reliable high-precision results and works for every chemical element. Features
include:
- FP-LAPW basis with local-orbitals
- APW radial derivative matching to arbitrary orders at muffin-tin surface
(super-LAPW, etc.)
- Arbitrary number of local-orbitals allowed (all core states can be made
valence for example)
- Total energies resolved into components
- Forces - including incomplete basis set (IBS) and core corrections work
with spin-orbit coupling, non-collinear magnetism and LDA+U
- LSDA, GGA and (potential-only) meta-GGA functionals available
- LDA+U: fully localised limit (FLL), around mean field (AFM) and
interpolation between the two; works with SOC, NCM and spin-spirals
- Isolated molecules or periodic systems
- Core states treated with the radial Dirac equation
- Spin-orbit coupling (SOC) included in second-variational scheme
- Non-collinear magnetism (NCM) with arbitrary on-site magnetic fields
- Fixed spin-moment calculations (with SOC and NCM)
- Time-dependent density functional theory (TDDFT) for linear optical
response calculations
- First-order optical response
- Non-linear optical (NLO) second harmonic generation
Elk is parallelized via hybrid OpenMP/OpenMPI.
|
|
ergo
Quantum chemistry program for large-scale calculations
|
Versions of package ergo |
Release | Version | Architectures |
bullseye | 3.8-1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
stretch | 3.5-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,s390x |
sid | 3.8.2-1.1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
jessie | 3.4.0-1 | amd64,armel,armhf,i386 |
bookworm | 3.8-1 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
buster | 3.5-1 | amd64,arm64,armhf,i386 |
|
License: DFSG free
|
ErgoSCF is a quantum chemistry program for large-scale self-consistent field
calculations. It employs modern linear scaling techniques like fast multipole
methods, hierarchic sparse matrix algebra, density matrix purification, and
efficient integral screening. Linear scaling is achieved not only in terms of
CPU usage but also memory utilization. It uses Gaussian basis sets.
It can compute single-point energies for the following methods:
- Restricted and unrestricted Hartree-Fock (HF) theory
- Restricted and unrestricted Kohn-Sham density functional theory (DFT)
- Full Configuration-Interaction (FCI)
The following Exchange-Correlational (XC) density functionals are included:
- Local Density Approximation (LDA)
- Gradient-corrected (GGA) XC functionals BLYP, BP86, PW91 and PBE
- Hybrid XC functionals B3LYP, BHandHLYP, PBE0 and CAMB3LYP
Further features include:
- Linear response calculations (polarizabilities and excitation energies) for
restricted reference densities
- External electric fields
- Electron dynamics via Time-Dependent Hartree-Fock (TDHF)
|
|
mpqc
Massively Parallel Quantum Chemistry Program
|
Versions of package mpqc |
Release | Version | Architectures |
bullseye | 2.3.1-21 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
sid | 2.3.1-22 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
jessie | 2.3.1-16 | amd64,armel,armhf,i386 |
stretch | 2.3.1-18+deb9u1 | amd64,arm64,armel,armhf,i386,mips,mips64el,mipsel,ppc64el,s390x |
buster | 2.3.1-19 | amd64,arm64,armhf,i386 |
bookworm | 2.3.1-22 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
Debtags of package mpqc: |
field | chemistry, physics |
interface | commandline, x11 |
role | program |
scope | utility |
uitoolkit | gtk |
x11 | application |
|
License: DFSG free
|
MPQC is an ab-inito quantum chemistry program. It is especially designed
to compute molecules in a highly parallelized fashion.
It can compute energies and gradients for the following methods:
- Closed shell and general restricted open shell Hartree-Fock (HF)
- Density Functional Theory (DFT)
- Closed shell second-order Moeller-Plesset perturbation theory (MP2)
Additionally, it can compute energies for the following methods:
- Open shell MP2 and closed shell explicitly correlated MP2 theory (MP2-R12)
- Second order open shell pertubation theory (OPT2[2])
- Z-averaged pertubation theory (ZAPT2)
It also includes an internal coordinate geometry optimizer.
MPQC is built upon the Scientific Computing Toolkit (SC).
Please cite:
The Massively Parallel Quantum Chemistry Program (MPQC), Version 2.3.1, Curtis L. Janssen, Ida B. Nielsen, Matt L. Leininger, Edward F. Valeev, Joseph P. Kenny, Edward T. Seidl, Sandia National Laboratories, Livermore, CA.
(2008)
|
|
mpqc3
Massively Parallel Quantum Chemistry Program
|
Versions of package mpqc3 |
Release | Version | Architectures |
buster | 0.0~git20170114-4.1 | amd64,arm64,armhf,i386 |
stretch | 0.0~git20170114-4 | amd64,arm64,i386,mips64el,ppc64el |
|
License: DFSG free
|
MPQC3 is an ab-inito quantum chemistry program. It is especially designed to
compute molecules in an explicitly-correlated fashion.
It can compute energies and gradients for the following methods:
- Hartree-Fock (HF)
- Density Functional Theory (DFT)
- Second-order Moeller-Plesset pertubation theory (MP2)
Additionally, it can compute energies for the following methods:
- Local MP2 (LMP2)
- Explicitly-correlated density-fitted MP2 (DF-MP2-F12)
- Explicitly-correlated density-fitted coupled-cluster singles doubles
(DF-CCSD-F12)
- Explicitly-correlated density-fitted coupled-cluster singles doubles with
perturbative triples (DF-CCSD(T)-F12)
- Explicitly-correlated density-fitted complete active space SCF
(DF-CASSCF-F12)
- Explicitly-correlated density-fitted multi-reference configuration
interaction (DF-MRCI-F12)
It also includes an internal coordinate geometry optimizer.
|
|
nwchem
??? missing short description for package nwchem :-(
|
Versions of package nwchem |
Release | Version | Architectures |
buster | 6.8.1-5 | amd64,arm64,armhf,i386 |
bullseye | 7.0.2-1 | amd64,arm64,armhf,i386,mips64el,ppc64el,s390x |
sid | 7.2.3-6 | all |
bookworm | 7.0.2-4 | all |
jessie | 6.5+r26243-4 | amd64,armel,armhf,i386 |
Debtags of package nwchem: |
field | chemistry |
role | program |
|
License: DFSG free
|
|
|
openmolcas
Quantum chemistry software package
|
Versions of package openmolcas |
Release | Version | Architectures |
bullseye | 20.10-2 | amd64,arm64,mips64el,ppc64el,s390x |
bookworm | 22.10-1 | amd64,arm64,mips64el,ppc64el,s390x |
sid | 23.10-1 | amd64,arm64,mips64el,ppc64el,riscv64,s390x |
|
License: DFSG free
|
The key feature of OpenMolcas is the multiconfigurational approach to the
electronic structure.
It can compute energies, gradients and hessians for the following methods:
- Hartree-Fock SCF (HF)
- Complete active space SCF (CASSCF)
It can compute energies and gradients for the following methods:
- Hartree-Fock (HF)
- Density-Functional Theory (DFT)
- Second-order Moeller-Plesset perturbation theory (MP2)
- Complete and restricted active space SCF (CASSCF/RASSCF)
Additionally, it can compute energies for the following methods:
- Closed shell Moeller-Plesset perturbation theory (MP2)
- Complete active space second order perturbation theory (CASPT2)
- Coupled-cluster singles doubles (CCSD), optionally wihth
Cholesky-Decomposition (CD)/Resolution-of-the Identity (RI)
- CD/RI Coupled-cluster singles doubles with perturbative
triples (CCSD(T))
- Density Matrix Renormalization Group SCF (DMRG-SCF)
|
|
psi3
|
Versions of package psi3 |
Release | Version | Architectures |
buster | 3.4.0-6 | amd64,arm64,armhf,i386 |
jessie | 3.4.0-5 | amd64,armel,armhf,i386 |
bookworm | 3.4.0-6 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
sid | 3.4.0-6 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
bullseye | 3.4.0-6 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
stretch | 3.4.0-6 | amd64,arm64,armel,armhf,i386,mips,mips64el,mipsel,ppc64el,s390x |
Debtags of package psi3: |
field | chemistry, physics |
interface | commandline |
role | program |
science | calculation |
scope | suite |
use | calculating |
|
License: DFSG free
|
PSI3은 제1원리 계산 프로그램입니다. 이 프로그램은 특히 고도로 연관된 기술을
사용하여 중간 분자에 대한 작은 성질을 정밀하게 계산하도록 설계되었습니다.
이 프로그램은 다음과 같은 방법을 위해 에너지와 변화도를 계산할 수 있습니다:
- 닫힌 쉘과 일반적으로 제한된 열린 쉘 하트리-폭 (RHF/ROHF)
(RHF에 대한 분석 헤센 포함)
- 폐각 Moeller-Plesset pertubation 이론 (MP2)
- 완전한 활동 공간 SCF (CASSCF)
- Coupled-cluster singles doubles (CCSD)
- Coupled-cluster singles doubles with pertubative triples (CCSD(T))
(오직 제한되지 않는 (UHF) 참조 파동 함수를 위해)
추가로, 이 프로그램은 다음과 같은 방법을 위해 에너지를 계산할 수 있습니다:
- 무제한 열린 쉘 하트리-폭 (UHF)
- 닫힌/열린 쉘 Moeller-Plesset의 pertubation 이론 (MP2)
- 폐각 명시적 상관 관계 MP2 이론 (MP2-R12) 및 스핀 구성 요소
확장 MP2 이론 (SCS-MP2)
- 다중 참조 구성 상호 작용 (MRCI)
- Coupled-cluster singles doubles with pertubative triples (CCSD(T))
- 2/3차 근사 coupled-cluster singles doubles (CC2/CC3)
- 다중 참조 coupled-cluster singles doubles (MRCCSD)
- 닫힌 쉘과 일반적으로 제한된 열린 쉘 운동 방정식 coupled-cluster singles
doubles (EOM-CCSD)
추가적인 기능으로 다음을 포함합니다:
- 유연하고, 모듈형이며 그리고 사용자 정의가 가능한 입력 형식
- CC2/CC3, EOM-CCSD, CASSCF and MRCI 및 MRCCSD 방법을 통한
흥분 상태 계산
- 내부 좌표 기하학 최적화
- 고주파 주파수 계산
- 쌍극자 / 사극자 능률, 자연 궤도, 정전기 전위, 미세 커플링 상수 또는
스핀 밀도와 같은 1 전자 특성
- 효율성을 높이기 위한 분자 포인트 그룹 대칭의 활용
|
|
psi4
Quantum Chemical Program Suite
|
Versions of package psi4 |
Release | Version | Architectures |
jessie | 4.0~beta5+dfsg-2 | amd64,armel,armhf,i386 |
sid | 1.3.2+dfsg-5 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
bullseye | 1.3.2+dfsg-2 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
buster | 1.2.1-2 | amd64,arm64,armhf,i386 |
stretch | 1.0-1 | amd64,arm64,armhf,i386,mips64el,ppc64el,s390x |
bookworm | 1.3.2+dfsg-5 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
upstream | 1.9.1 |
|
License: DFSG free
|
PSI4 is an ab-initio quantum chemistry program. It is especially designed to
accurately compute properties of small to medium molecules using highly
correlated techniques. PSI4 is the parallelized successor of PSI3 and includes
many state-of-the-art theoretical methods.
It can compute energies, gradients and hessians for the following methods:
- Restricted Hartree-Fock (RHF)
It can compute energies and gradients for the following methods:
- Restricted, unrestricted and general restricted open shell Hartree-Fock
(RHF/ROHF)
- Restricted, unrestricted and general restricted open shell
Densitry-Functional Theory, including density-fitting (DF-DFT)
- Density Cumulant Functional Theory (DCFT)
- Density-fitted Moeller-Plesset perturbation theory (DF-MP2)
- Density-fitted Orbital-Optimized MP2 theory (DF-OMP2)
- (Orbital-Optimized) MP3 theory (OMP3/MP3)
- Coupled-cluster singles doubles (CCSD)
- Density-fitted coupled-cluster singles doubles (DF-CCSD) and with
perturbative triples (DF-CCSD(T))
- Second-order approximate coupled-cluster singles doubles (CC2)
- Equation-of-motion coupled-cluster singles doubles (EOM-CCSD)
Additionally, it can compute energies for the following methods:
- Spin-component scaled MP2 theory (SCS-MP2)
- Fourth order Moeller-Plesset perturbation theory (MP4)
- Density-fitted symmetry-adapted perturbation theory (DF-SAPT)
- Density-fitted complete active space SCF (DF-CASSCF)
- Configuration-interaction singles doubles (CISD)
- Full configuration-interaction (FCI)
- Closed-shell Density-fitted coupled-cluster singles doubles (DF-CCSD)
- Closed-shell Density-fitted Coupled-cluster singles doubles with
perturbative triples (DF-CCSD(T))
- Second/third-order approximate coupled-cluster singles doubles (CC2/CC3)
- Mukherjee Multireference coupled-cluster singles doubles theory (mk-MRCCSD)
- Mukherjee Multireference coupled-cluster singles doubles with perturbative
triples theory (mk-MRCCSD(T))
- Second order algebraic-diagrammatic construction theory (ADC(2))
- Quadratic configuration interaction singles doubles (QCISD)
- Quadratic configuration interaction singles doubles with perturbative
triples (QCISD(T))
- Density Matrix Renormalization Group SCF (DMRG-SCF), CASPT2 (DMRG-CASPT2)
and CI (DMRG-CI)
Further features include:
- Flexible, modular and customizable input format via Python
- Excited state calculations with the EOM-CC2/CC3, EOM-CCSD, ADC(2), MRCI and
mk-MRCC methods
- Utilization of molecular point-group symmetry to increase efficiency
- Internal coordinate geometry optimizer
- Harmonic frequencies calculations (via finite differences)
- Potential surface scans
- Counterpoise correction
- One-electron properties like dipole/quadrupole moments, transition dipole
moments, natural orbitals occupations or electrostatic potential
- Composite methods like complete basis set extrapolation or G2/G3
- Scalar-relativistic corrections via two-component approach (X2C)
Please cite:
Robert M. Parrish, Lori A. Burns, Daniel G. A. Smith, Andrew C. Simmonett, A. Eugene DePrince, Edward G. Hohenstein, Uğur Bozkaya, Alexander Yu. Sokolov, Roberto Di Remigio, Ryan M. Richard, Jérôme F. Gonthier, Andrew M. James, Harley R. McAlexander, Ashutosh Kumar, Masaaki Saitow, Xiao Wang, Benjamin P. Pritchard, Prakash Verma, Henry F. Schaefer, Konrad Patkowski, Rollin A. King, Edward F. Valeev, Francesco A. Evangelista, Justin M. Turney, T. Daniel Crawford and C. David Sherrill:
Psi4 1.1: An Open-Source Electronic Structure Program Emphasizing Automation, Advanced Libraries, and Interoperability.
(eprint)
J. Chem. Theory Comput.
13(7):3185-3197
(2017)
|
|
|