Summary
machine-learning
software per apprendimento macchina
Questo metapacchetto installa tutto il software per apprendimento macchina
di PAN per fotoni e neutroni.
Description
For a better overview of the project's availability as a Debian package, each head row has a color code according to this scheme:
If you discover a project which looks like a good candidate for PAN Blend
to you, or if you have prepared an unofficial Debian package, please do not hesitate to
send a description of that project to the PAN Blend mailing list
Links to other tasks
|
PAN Blend machine-learning packages
Official Debian packages with high relevance
keras-doc
CPU/GPU math expression compiler for Python (docs)
|
Versions of package keras-doc |
Release | Version | Architectures |
buster | 2.2.4-1 | all |
|
License: DFSG free
|
Keras is a Python library for machine learning based on deep (multi-
layered) artificial neural networks (DNN), which follows a minimalistic
and modular design with a focus on fast experimentation.
Features of DNNs like neural layers, cost functions, optimizers,
initialization schemes, activation functions and regularization schemes
are available in Keras a standalone modules which can be plugged together
as wanted to create sequence models or more complex architectures.
Keras supports convolutions neural networks (CNN, used for image
recognition resp. classification) and recurrent neural networks (RNN,
suitable for sequence analysis like in natural language processing).
It runs as an abstraction layer on the top of Theano (math expression
compiler) by default, which makes it possible to accelerate the computations
by using (GP)GPU devices. Alternatively, Keras could run on Google's
TensorFlow (not yet available in Debian).
This package contains the documentation for Keras.
|
|
libopencv-dnn-dev
file di sviluppo per libopencv-dnn406t64
|
Versions of package libopencv-dnn-dev |
Release | Version | Architectures |
sid | 4.6.0+dfsg-14 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
trixie | 4.6.0+dfsg-14 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
bookworm | 4.6.0+dfsg-12 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
experimental | 4.10.0+dfsg-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
bullseye | 4.5.1+dfsg-5 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
upstream | 4.11.0 |
|
License: DFSG free
|
Questo pacchetto contiene i file header e la libreria statica necessari per
compilare con il modulo per reti neurali profonde.
La libreria Open Computer Vision è una raccolta di algoritmi e codice
d'esempio per vari problemi relativi alla visione artificiale. La libreria
è compatibile con IPL (Image Processing Library di Intel) e, se
disponibile, può usare IPP (Integrated Performance Primitives di Intel) per
ottenere prestazioni migliori.
OpenCV fornisce tipi di dati e operatori portabili di basso livello e un
insieme di funzionalità di alto livello per l'acquisizione video,
l'elaborazione e l'analisi di immagini, analisi strutturale, analisi del
movimento e inseguimento di oggetti, riconoscimento di oggetti,
calibrazione di videocamere e ricostruzione 3D.
Please cite:
Gary Bradski and Adrian Kaehler:
Learning OpenCV: Computer Vision with the OpenCV Library
(2008)
|
|
libopencv-dnn4.5
modulo per reti neurali profonde per visione artificiale
|
Versions of package libopencv-dnn4.5 |
Release | Version | Architectures |
bullseye | 4.5.1+dfsg-5 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
upstream | 4.11.0 |
|
License: DFSG free
|
Questo pacchetto contiene il modulo per reti neurali profonde di OpenCV
(Open Computer Vision).
La libreria Open Computer Vision è una raccolta di algoritmi e codice
d'esempio per vari problemi relativi alla visione artificiale. La libreria
è compatibile con IPL (Image Processing Library di Intel) e, se
disponibile, può usare IPP (Integrated Performance Primitives di Intel) per
ottenere prestazioni migliori.
OpenCV fornisce tipi di dati e operatori portabili di basso livello e un
insieme di funzionalità di alto livello per l'acquisizione video,
l'elaborazione e l'analisi di immagini, analisi strutturale, analisi del
movimento e inseguimento di oggetti, riconoscimento di oggetti,
calibrazione di videocamere e ricostruzione 3D.
Please cite:
Gary Bradski and Adrian Kaehler:
Learning OpenCV: Computer Vision with the OpenCV Library
(2008)
|
|
libtorch-test
Tensors and Dynamic neural networks in Python (Test Binaries)
|
Versions of package libtorch-test |
Release | Version | Architectures |
bullseye | 1.7.1-7 | amd64,arm64,armhf,ppc64el,s390x |
sid | 2.5.1+dfsg-4 | amd64,arm64,ppc64el,riscv64,s390x |
trixie | 2.5.1+dfsg-4 | amd64,arm64,ppc64el,riscv64,s390x |
bookworm | 1.13.1+dfsg-4 | amd64,arm64,ppc64el,s390x |
|
License: DFSG free
|
PyTorch is a Python package that provides two high-level features:
(1) Tensor computation (like NumPy) with strong GPU acceleration
(2) Deep neural networks built on a tape-based autograd system
You can reuse your favorite Python packages such as NumPy, SciPy and Cython
to extend PyTorch when needed.
This is the CPU-only version of PyTorch (Test Binaries).
Please cite:
Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai and Soumith Chintala:
|
|
libtorch-thnn
libTHNN.so of Neural Network Package for Torch Framework
|
Versions of package libtorch-thnn |
Release | Version | Architectures |
buster | 0~20171002-g8726825+dfsg-4 | amd64,armhf,i386 |
|
License: DFSG free
|
This package provides an easy and modular way to build and train
simple or complex neural networks using Torch Framework.
This package contains libTHNN.so , backend library for lua-torch-nn.
|
|
python-tpot-doc
documentation and examples for TPOT
|
Versions of package python-tpot-doc |
Release | Version | Architectures |
bullseye | 0.11.7+dfsg-1 | all |
|
License: DFSG free
|
Consider TPOT your Data Science Assistant. TPOT is a Python Automated Machine
Learning tool that optimizes machine learning pipelines using genetic
programming.
TPOT will automate the most tedious part of machine learning by intelligently
exploring thousands of possible pipelines to find the best one for your data.
Once TPOT is finished searching (or you get tired of waiting), it provides you
with the Python code for the best pipeline it found so you can tinker with the
pipeline from there.
TPOT is built on top of scikit-learn, so all of the code it generates should
look familiar... if you're familiar with scikit-learn, anyway.
This package contains the documentation, example scripts, and tutorials for
TPOT.
|
|
python3-brian
simulatore per reti neurali spiking
|
Versions of package python3-brian |
Release | Version | Architectures |
trixie | 2.7.1+ds-2 | all |
bookworm | 2.5.1-3 | all |
bullseye | 2.4.2-6 | all |
sid | 2.8.0-1 | all |
|
License: DFSG free
|
Brian è un simulatore per reti neurali spiking guidato dal tempo. È
progettato con un'enfasi su flessibilità ed estensibilità, per lo sviluppo
rapido e l'affinamento di modelli neurali. I modelli dei neuroni sono
specificati dall'utente con insiemi di equazioni differenziali, condizioni
di soglia e condizioni di ripristino (date come stringhe). L'attenzione è
principalmente su reti di modelli di neuroni a compartimento singolo (es.
neuroni di tipo Hodgkin-Huxley o integra-e-spara con perdita). Le
funzionalità includono:
- un sistema per specificare quantità con dimensioni fisiche;
- integrazione numerica esatta per equazioni differenziali lineari;
- integrazione di Eulero, Runge-Kutta ed esponenziale di Eulero per
equazioni differenziali non lineari;
- connessioni sinaptiche con ritardi;
- plasticità a breve termine e a lungo termine (plasticità dipendente
dalla tempistica degli spike);
- una libreria di componenti modello standard che include equazioni
integra-e-spara, sinapsi e correnti ioniche;
- strumenti per fare automaticamente il fitting di modelli di neuroni
spiking su registrazioni elettrofisiologiche.
|
|
python3-eagerpy
wrapper per diversi tipi di array multidimensionali Python
|
Versions of package python3-eagerpy |
Release | Version | Architectures |
bullseye | 0.29.0-3 | all |
bookworm | 0.30.0-3 | all |
trixie | 0.30.0-3 | all |
sid | 0.30.0-3 | all |
|
License: DFSG free
|
EagerPy è una infrastruttura Python che consente di scrivere codice che
funziona nativamente in maniera automatica con PyTorch, TensorFlow, JAX
e NumPy.
|
|
python3-keras
deep learning framework running on Theano or TensorFlow
|
Versions of package python3-keras |
Release | Version | Architectures |
bullseye | 2.3.1+dfsg-3 | all |
buster | 2.2.4-1 | all |
|
License: DFSG free
|
Keras is a Python library for machine learning based on deep (multi-
layered) artificial neural networks (DNN), which follows a minimalistic
and modular design with a focus on fast experimentation.
Features of DNNs like neural layers, cost functions, optimizers,
initialization schemes, activation functions and regularization schemes
are available in Keras a standalone modules which can be plugged together
as wanted to create sequence models or more complex architectures.
Keras supports convolutions neural networks (CNN, used for image
recognition resp. classification) and recurrent neural networks (RNN,
suitable for sequence analysis like in natural language processing).
It runs as an abstraction layer on the top of Theano (math expression
compiler) by default, which makes it possible to accelerate the computations
by using (GP)GPU devices. Alternatively, Keras could run on Google's
TensorFlow (not yet available in Debian).
|
|
python3-keras-applications
popular models and pre-trained weights for the Keras deep learning framework
|
Versions of package python3-keras-applications |
Release | Version | Architectures |
bookworm | 1.0.8+ds-1 | all |
buster | 1.0.6-1 | all |
bullseye | 1.0.8+ds-1 | all |
trixie | 1.0.8+ds-2 | all |
sid | 1.0.8+ds-2 | all |
|
License: DFSG free
|
Keras is a Python library for machine learning based on deep (multi-
layered) artificial neural networks (DNN), which follows a minimalistic
and modular design with a focus on fast experimentation.
Features of DNNs like neural layers, cost functions, optimizers,
initialization schemes, activation functions and regularization schemes
are available in Keras a standalone modules which can be plugged together
as wanted to create sequence models or more complex architectures.
Keras supports convolutions neural networks (CNN, used for image
recognition resp. classification) and recurrent neural networks (RNN,
suitable for sequence analysis like in natural language processing).
It runs as an abstraction layer on the top of Theano (math expression
compiler) by default, which makes it possible to accelerate the computations
by using (GP)GPU devices. Alternatively, Keras could run on Google's
TensorFlow (not yet available in Debian).
Keras Applications is the applications module of the Keras deep
learning library. It provides model definitions and pre-trained
weights for a number of popular architectures, such as VGG16, ResNet50,
Xception, MobileNet, and more.
|
|
python3-keras-preprocessing
data preprocessing module for the Keras deep learning framework
|
Versions of package python3-keras-preprocessing |
Release | Version | Architectures |
trixie | 1.1.2-1 | all |
bullseye | 1.1.0+ds-1 | all |
bookworm | 1.1.0+ds-1 | all |
sid | 1.1.2-1 | all |
buster | 1.0.5-1 | all |
|
License: DFSG free
|
Keras is a Python library for machine learning based on deep (multi-
layered) artificial neural networks (DNN), which follows a minimalistic
and modular design with a focus on fast experimentation.
Features of DNNs like neural layers, cost functions, optimizers,
initialization schemes, activation functions and regularization schemes
are available in Keras a standalone modules which can be plugged together
as wanted to create sequence models or more complex architectures.
Keras supports convolutions neural networks (CNN, used for image
recognition resp. classification) and recurrent neural networks (RNN,
suitable for sequence analysis like in natural language processing).
It runs as an abstraction layer on the top of Theano (math expression
compiler) by default, which makes it possible to accelerate the computations
by using (GP)GPU devices. Alternatively, Keras could run on Google's
TensorFlow (not yet available in Debian).
Keras Preprocessing is the data preprocessing and data augmentation
module of the Keras deep learning library. It provides utilities for
working with image data, text data, and sequence data.
|
|
python3-lasagne
libreria per apprendimento profondo costruita sopra a Theano (moduli Python 3)
|
Versions of package python3-lasagne |
Release | Version | Architectures |
buster | 0.1+git20181019.a61b76f-1 | all |
stretch | 0.1+git20160728.8b66737-2 | all |
|
License: DFSG free
|
Lasagne è una libreria Python per costruire e addestrare reti neurali
artificiali profonde (multi-livello) sopra a Theano (compilatore di
espressioni matematiche). In confronto ad altri livelli di astrazione come
ad esempio Keras, astrae Theano il meno possibile.
Lasagne gestisce reti come Convolutional Neural Network (CNN, usate
principalmente per il riconoscimento di immagini per classificarle) e il
tipo Long Short-Term Memory (LSTM, un sottotipo di Recurrent Neural
Network, RNN).
Questo pacchetto contiene i moduli per Python 3.
|
|
python3-mdp
toolkit modulare per elaborazione dei dati
|
Versions of package python3-mdp |
Release | Version | Architectures |
bookworm | 3.6-2 | amd64,arm64,mips64el,ppc64el |
jessie | 3.3-2 | all |
stretch | 3.5-1 | all |
bullseye | 3.6-1.1 | all |
trixie | 3.6-9 | all |
sid | 3.6-9 | all |
|
License: DFSG free
|
Infrastruttura Python per elaborazione di dati per creare software per
complesse elaborazioni di dati combinando in pipe e reti algoritmi
largamente usati di apprendimento macchina. Gli algoritmi implementati
includono: PCA (Principal Component Analysis), ICA (Independent Component
Analysis), SFA (Slow Feature Analysis), ISFA (Independent Slow Feature
Analysis), GNG (Growing Neural Gas), analisi fattoriale, FDA (Fisher
Discriminant Analysis) e classificatori gaussiani.
|
|
python3-onnx
Open Neural Network Exchange (ONNX) (Python)
|
Versions of package python3-onnx |
Release | Version | Architectures |
sid | 1.16.2-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
trixie | 1.16.2-1 | amd64,arm64,armel,armhf,i386,mips64el,ppc64el,riscv64,s390x |
bullseye | 1.7.0+dfsg-3 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
bookworm | 1.12.0-2 | amd64,arm64,armel,armhf,i386,mips64el,mipsel,ppc64el,s390x |
upstream | 1.17.0 |
|
License: DFSG free
|
Open Neural Network Exchange (ONNX) is the first step toward an open ecosystem
that empowers AI developers to choose the right tools as their project evolves.
ONNX provides an open source format for AI models. It defines an extensible
computation graph model, as well as definitions of built-in operators and
standard data types. Initially onnx focuses on the capabilities needed for
inferencing (evaluation).
Caffe2, PyTorch, Microsoft Cognitive Toolkit, Apache MXNet and other tools are
developing ONNX support. Enabling interoperability between different frameworks
and streamlining the path from research to production will increase the speed
of innovation in the AI community.
This package contains the python interface.
|
|
python3-pyclustering
algoritmi di data mining (Python 3)
|
Versions of package python3-pyclustering |
Release | Version | Architectures |
sid | 0.10.1.2-2 | all |
trixie | 0.10.1.2-2 | all |
bookworm | 0.10.1.2-2 | all |
bullseye | 0.10.1.2-1 | all |
|
License: DFSG free
|
Questa libreria fornisce strumenti per algoritmi per cluster, reti
oscillatorie e reti neurali.
Questo pacchetto installa la libreria per Python 3.
|
|
python3-sklearn
moduli Python per l'apprendimento automatico e il data mining - Python 3
|
Versions of package python3-sklearn |
Release | Version | Architectures |
buster | 0.20.2+dfsg-6 | all |
bookworm | 1.2.1+dfsg-1 | all |
sid | 1.4.2+dfsg-7 | all |
bullseye | 0.23.2-5 | all |
stretch | 0.18-5 | all |
trixie | 1.4.2+dfsg-7 | all |
upstream | 1.6.1 |
|
License: DFSG free
|
scikit-learn è una raccolta di moduli Python relativi ad apprendimento
automatico/statistico e data mining. Una lista non esaustiva di
funzionalità incluse:
- modelli misti gaussiani,
- apprendimento tramite varietà,
- kNN,
- SVM (tramite LIBSVM).
Questo pacchetto contiene la versione per Python 3.
|
|
python3-skorch
scikit-learn compatible neural network library that wraps PyTorch
|
Versions of package python3-skorch |
Release | Version | Architectures |
trixie | 1.0.0-1 | all |
bullseye | 0.9.0-3 | all |
sid | 1.0.0-1 | all |
bookworm | 0.12.1-2 | all |
upstream | 1.1.0 |
|
License: DFSG free
|
The goal of skorch is to make it possible to use PyTorch with sklearn. This is
achieved by providing a wrapper around PyTorch that has an sklearn interface.
In that sense, skorch is the spiritual successor to nolearn, but instead of
using Lasagne and Theano, it uses PyTorch.
skorch does not re-invent the wheel, instead getting as much out of your way as
possible. If you are familiar with sklearn and PyTorch, you don’t have to learn
any new concepts, and the syntax should be well known. (If you’re not familiar
with those libraries, it is worth getting familiarized.)
Additionally, skorch abstracts away the training loop, making a lot of
boilerplate code obsolete. A simple net.fit(X, y) is enough. Out of the box,
skorch works with many types of data, be it PyTorch Tensors, NumPy arrays,
Python dicts, and so on. However, if you have other data, extending skorch is
easy to allow for that.
Overall, skorch aims at being as flexible as PyTorch while having a clean
interface as sklearn.
|
|
python3-torch
Tensors and Dynamic neural networks in Python (Python Interface)
|
Versions of package python3-torch |
Release | Version | Architectures |
bookworm | 1.13.1+dfsg-4 | amd64,arm64,ppc64el,s390x |
trixie | 2.5.1+dfsg-4 | amd64,arm64,ppc64el,riscv64,s390x |
sid | 2.5.1+dfsg-4 | amd64,arm64,ppc64el,riscv64,s390x |
bullseye | 1.7.1-7 | amd64,arm64,armhf,ppc64el,s390x |
|
License: DFSG free
|
PyTorch is a Python package that provides two high-level features:
(1) Tensor computation (like NumPy) with strong GPU acceleration
(2) Deep neural networks built on a tape-based autograd system
You can reuse your favorite Python packages such as NumPy, SciPy and Cython
to extend PyTorch when needed.
This is the CPU-only version of PyTorch (Python interface).
Please cite:
Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai and Soumith Chintala:
|
|
python3-torch-ignite
High-level library to help with training and evaluating in PyTorch
|
Versions of package python3-torch-ignite |
Release | Version | Architectures |
sid | 0.4.12-1 | all |
bullseye | 0.4.3-1 | all |
upstream | 0.5.1 |
|
License: DFSG free
|
Ignite is a high-level library to help with training and evaluating neural
networks in PyTorch flexibly and transparently.
Features
- Less code than pure PyTorch while ensuring maximum control and simplicity
- Library approach and no program's control inversion
- Extensible API for metrics, experiment managers, and other components
|
|
python3-tpot
Automated Machine Learning tool built on top of scikit-learn
|
Versions of package python3-tpot |
Release | Version | Architectures |
bullseye | 0.11.7+dfsg-1 | all |
|
License: DFSG free
|
Consider TPOT your Data Science Assistant. TPOT is a Python Automated Machine
Learning tool that optimizes machine learning pipelines using genetic
programming.
TPOT will automate the most tedious part of machine learning by intelligently
exploring thousands of possible pipelines to find the best one for your data.
Once TPOT is finished searching (or you get tired of waiting), it provides you
with the Python code for the best pipeline it found so you can tinker with the
pipeline from there.
TPOT is built on top of scikit-learn, so all of the code it generates should
look familiar... if you're familiar with scikit-learn, anyway.
This package contains the Python 3.x version of TPOT.
|
|
Debian packages in contrib or non-free
python3-torch-cuda
Tensors and Dynamic neural networks in Python (Python Interface)
|
Versions of package python3-torch-cuda |
Release | Version | Architectures |
sid | 2.5.1+dfsg-4 (contrib) | amd64,arm64,ppc64el |
|
License: DFSG free, but needs non-free components
|
PyTorch is a Python package that provides two high-level features:
(1) Tensor computation (like NumPy) with strong GPU acceleration
(2) Deep neural networks built on a tape-based autograd system
You can reuse your favorite Python packages such as NumPy, SciPy and Cython
to extend PyTorch when needed.
This is the CUDA version of PyTorch (Python interface).
|
|